
Testfile

Testfile ii

COLLABORATORS

TITLE :

Testfile

ACTION NAME DATE SIGNATURE

WRITTEN BY January 1, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Testfile iii

Contents

1 Testfile 1

1.1 Table Of Contents . 1

1.2 rtgmaster.library/CallRtgC2P . 3

1.3 rtgmaster.library/CloseClient . 4

1.4 rtgmaster.library/CloseRtgScreen . 6

1.5 rtgmaster.library/CloseServer . 6

1.6 rtgmaster.library/CopyRtgPixelArray . 7

1.7 rtgmaster.library/DrawRtgLine . 8

1.8 rtgmaster.library/DrawRtgLineRGB . 9

1.9 rtgmaster.library/FillRtgRect . 9

1.10 rtgmaster.library/FillRtgRectRGB . 10

1.11 rtgmaster.library/FreeRtgScreenModeReq . 11

1.12 rtgmaster.library/FreeScreenModes . 11

1.13 rtgmaster.library/GetBufAdr . 12

1.14 rtgmaster.library/GetRtgScreenData . 13

1.15 rtgmaster.library/GetScreenModes . 13

1.16 rtgmaster.library/GetSegment . 14

1.17 rtgmaster.library/GetUDPName . 14

1.18 rtgmaster.library/LoadRGBRtg . 15

1.19 rtgmaster.library/LockRtgScreen . 16

1.20 rtgmaster.library/OpenClient . 17

1.21 rtgmaster.library/OpenRtgScreen . 19

1.22 rtgmaster.library/OpenServer . 19

1.23 rtgmaster.library/RtgAccept . 21

1.24 rtgmaster.library/RtgBlit . 22

1.25 rtgmaster.library/RtgBltClear . 23

1.26 rtgmaster.library/RtgClearPointer . 24

1.27 rtgmaster.library/RtgCloseFont . 24

1.28 rtgmaster.library/RtgInAdr . 25

1.29 rtgmaster.library/RtgInitRDCMP . 26

Testfile iv

1.30 rtgmaster.library/RtgIoctl . 27

1.31 rtgmaster.library/RtgOpenFont . 28

1.32 rtgmaster.library/RtgRecv . 29

1.33 rtgmaster.library/RtgScreenAtFront . 31

1.34 rtgmaster.library/RtgScreenModeReq . 32

1.35 rtgmaster.library/RtgSend . 33

1.36 rtgmaster.library/RtgSetFont . 35

1.37 rtgmaster.library/RtgSetPointer . 35

1.38 rtgmaster.library/RtgGetMsg . 36

1.39 rtgmaster.library/RtgReplyMsg . 38

1.40 rtgmaster.library/RtgSetTextMode . 39

1.41 rtgmaster.library/RtgSetTextModeRGB . 40

1.42 rtgmaster.library/RtgText . 41

1.43 rtgmaster.library/RtgWaitRDCMP . 41

1.44 rtgmaster.library/RtgWaitTOF . 42

1.45 rtgmaster.library/RunServer . 43

1.46 rtgmaster.library/SetSegment . 44

1.47 rtgmaster.library/SwitchScreens . 45

1.48 rtgmaster.library/UnlockRtgScreen . 46

1.49 rtgmaster.library/WaitRtgBlit . 46

1.50 rtgmaster.library/WaitRtgSwitch . 47

1.51 rtgmaster.library/WriteRtgPixel . 47

1.52 rtgmaster.library/WriteRtgPixelArray . 48

1.53 rtgmaster.library/WriteRtgPixelRGB . 49

Testfile 1 / 50

Chapter 1

Testfile

1.1 Table Of Contents

rtgMaster.library AutoDOCS

CallRtgC2P

CloseClient

CloseRtgScreen

CloseServer

CopyRtgPixelArray

DrawRtgLine

DrawRtgLineRGB

FillRtgRect

FillRtgRectRGB

FreeRtgScreenModeReq

FreeScreenModes

GetBufAdr

GetRtgScreenData

GetScreenModes

GetSegment

GetUDPName

LoadRGBRtg

Testfile 2 / 50

LockRtgScreen

OpenClient

OpenRtgScreen

OpenServer

RtgAccept

RtgBlit

RtgBltClear

RtgClearPointer

RtgCloseFont

RtgInAdr

RtgInitRDCMP

RtgIoctl

RtgOpenFont

RtgRecv

RtgScreenAtFront

RtgScreenModeReq

RtgSend

RtgSetFont

RtgSetPointer

RtgGetMsg

RtgReplyMsg

RtgSetTextMode

RtgSetTextModeRGB

RtgText

RtgWaitRDCMP

RtgWaitTOF

RunServer

SetSegment

SwitchScreens

Testfile 3 / 50

UnlockRtgScreen

WaitRtgBlit

WaitRtgSwitch

WriteRtgPixel

WriteRtgPixelArray

WriteRtgPixelRGB

1.2 rtgmaster.library/CallRtgC2P

rtgmaster.library/CallRtgC2P

NAME
CallRtgC2P -- Perform c2p for Planar Screens, CopyRtgPixelArray for Chunky ←↩

Screens

SYNOPSIS
int CallRtgC2P(RtgScreen,BufAdr,Array,signal,xpos,ypos,width,height,mode)
D0 A0 A1 A2 D0 D1 D2 D3 D4 D5

int CallRtgC2P(struct RtgScreen *,APTR,APTR,ULONG,ULONG,ULONG,ULONG,ULONG, ←↩
ULONG)

FUNCTION
This function will look what the "standard c2p" for the system is up to ←↩

now
(the standard c2p can be choose by a future version of the Rtgmaster ←↩

Screenmode
requester, the available c2p algorithms are found in libs:rtgc2p, how own ←↩

c2p
algorithms can be added to the system will be explained in the ←↩

documentation
of the first version of rtgmaster.library that actually supports ←↩

CallRtgC2P).
The function will, if the display is a Planar one, convert the Chunky Data ←↩

in
Array to Planar using the choosen c2p algorithm, and display it in the ←↩

choosen
Buffer. For Chunky Displays it will instead do the same as ←↩

CopyRtgChunkyPixel.
This way a very easy possibility to support both AGA and Graphics Boards ←↩

without
having to do "special versions" will be available, if one uses a Fastram ←↩

Buffer.

I am still looking for c2p algorithms for this function !!! All used c2p ←↩
algorithms

should support AGA and additional, it would be fine, if they supported
1x1,1x2,2x1 and 2x2. If you have fine c2p algorithms, mail me

Testfile 4 / 50

(MagicSN@birdland.es.bawue.de).

NOTE : The Array should EXACTLY be as big as specified with Left, Top, ←↩
Width

and Height... it should *NOT* be bigger.

NOTE: Currently you *HAVE TO* use xpos=0 ypos=0 width=<max x> height=<max ←↩
y>

Maybe this will change in the future !!!!!!!!!!!!!! This is only because i ←↩
do

not have ANY c2p that supports that feature up to now...

NOTE: Some c2p algorithms might do NOTHING in certain colour depths, ←↩
chunky modes

or for interleaved bitmaps. Be careful about this. If the c2p works,
this function returns 0, otherwise an errorcode.

Principially it COULD support 256, 64 (EHB), 32 or 16 colors and 1x1, 1x2, ←↩
2x1,

2x2,4x2,2x4 and 4x4 (look at the includes). It is also possible to choose ←↩
the

FASTEST AVAILABLE, the BEST AVAILABLE mode or the mode that was selected ←↩
from

the user as standard mode for his system, using the Screenmode Requester.

If the user did not specify a standard c2p, this function will use the ←↩
fastest

available mode.

The signal indicates (for asynchrone c2p) that the c2p has done. For ←↩
synchrone

ones it is set after quitting the function.

In mode you specify which c2p mode to use.

For Graphics Boards, ALWAYS 1x1 is used.

INPUTS
RtgScreen - The RtgScreen to use.
BufAdr - The address of the buffer to use
Array - The fastram buffer
Left - The x position on the Bitmap of RtgScreen where to put the stuff
Top - The y position
Width - The Width of the stuff
Height - The Height of the stuff

SEE ALSO

CopyRtgPixelArray()

1.3 rtgmaster.library/CloseClient

NAME
CloseClient -- Closes the Client of a TCP/IP connection again

Testfile 5 / 50

SYNOPSIS
CloseClient(SBase,Socket)

A0 A1

CloseClient(struct Library *,struct TCP_Socket *)

FUNCTION
Terminates a "virtual connection" of TCP/IP and gives the Socket of the ←↩

Client
back to the system. (For UDP it only gives the socket back to the system,
as there are no "virtual connections" in connectionless UDP).

NOTE: It might appear strange to you, that you have to open bsdsocket. ←↩
library

yourselves and provide it as parameter. This is needed because of some ←↩
internal

problems of AmiTCP, that make it IMPOSSIBLE opening it inside a library. ←↩
Look

at the Docs for more information.

You do NOT have to use rtgmaster.library’s Graphics Board features to
use rtgmaster.library’s TCP/IP features, if you do not WANT to...

INPUTS
SBase - Result of the call (C Syntax here...)

SBase = OpenLibrary("bsdsocket.library",0);
Socket - The Socket of the Client you want to close.

You should ONLY use this function for Clients,
NOT FOR SERVERS !!!

SEE ALSO

OpenClient()
,
OpenServer()

,
CloseServer()

,
RunServer()

,
RtgSend()

RtgRecv()
,
RtgAccept()

,
RtgIoctl()

,
GetUDPName()

,
RtgInAdr()

Testfile 6 / 50

1.4 rtgmaster.library/CloseRtgScreen

NAME
CloseRtgScreen -- Close a screen previously opened with

OpenRtgScreen

SYNOPSIS
CloseRtgScreen(RtgScreen)

A0

CloseRtgScreen(ULONG)

FUNCTION
Should close a RtgScreen opened by this sublibrary and free all
of its resources.

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.

SEE ALSO

OpenRtgScreen()

1.5 rtgmaster.library/CloseServer

NAME
CloseServer -- Closes the Server of a TCP/IP connection again

SYNOPSIS
CloseServer(SBase,Socket)

A0 A1

CloseServer(struct Library *,struct TCP_Socket *)

FUNCTION
Terminates a "virtual connection" of TCP/IP and gives the Socket of the ←↩

Server
back to the system. For UDP it only gives the socket back to the system, ←↩

as
for UDP there is no connection to terminate.

NOTE: It might appear strange to you, that you have to open bsdsocket. ←↩
library

yourselves and provide it as parameter. This is needed because of some ←↩
internal

problems of AmiTCP, that make it IMPOSSIBLE opening it inside a library. ←↩
Look

at the Docs for more information.

You do NOT have to use rtgmaster.library’s Graphics Board features to
use rtgmaster.library’s TCP/IP features, if you do not WANT to...

Testfile 7 / 50

INPUTS
SBase - Result of the call (C Syntax here...)

SBase = OpenLibrary("bsdsocket.library",0);
Socket - The Socket of the Client you want to close.

You should ONLY use this function for Servers,
NOT FOR CLIENTS !!!

SEE ALSO

OpenClient()
,
OpenServer()

,
CloseClient()

,
RunServer()

,
RtgSend()

RtgRecv()
,
RtgAccept()

,
RtgIoctl()

,
GetUDPName()

,
RtgInAdr()

1.6 rtgmaster.library/CopyRtgPixelArray

NAME
CopyRtgPixelArray -- Copy a rectangular array of pixels directly

to the graphics card memory without any
conversion

SYNOPSIS
CopyRtgPixelArray(RtgScreen, BufferAdr, Array, Left, Top, Width, Height, ←↩

SrcX,SrcY);
A0 A1 A2 D0 D1 D2 D3 ←↩

D4 D5

CopyRtgPixelArray(struct RtgScreen *, APTR, APTR, ULONG, ULONG,ULONG, ←↩
ULONG,ULONG,ULONG)

FUNCTION
Copies a rectangular array of pixels directly to the graphics card
memory with no conversion. The array of pixels is assumed to be

in the correct native format so it can be copied at maximum speed.
The copy routine however does take segment boundaries in account (if
required).

This routine is mainly intended for machines which have relatively
fast FastRAM compared to the speed of the graphics card RAM. This

Testfile 8 / 50

is usually on machines with a 32-bit accelerator card which have
a Zorro-II graphics card installed.

This function is not supported by the rtgAMI.library.

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.
BufferAdr - The address of the memory containing the actual

screen graphics
Array - Pointer to an array of pixels which is Width pixels wide,

and Height pixels high. The size of the pixel is dependant
on the ScreenBuffer your copying to. Make sure the array
is in the correct native format.

Left - X position of the top-left of the rectangular pixel array
Top - Y position of the top-left of the rectangular pixel array
Width - Width of the array in pixels
Height - Height of the array in pixels

SEE ALSO

OpenRtgScreen()
,
WriteRtgPixelArray()

,WriteRtgPixelRGBArray()

1.7 rtgmaster.library/DrawRtgLine

NAME
DrawRtgLine - draws a line on a RtgScreen

SYNOPSIS
DrawRtgLine(RtgScreen, BufferAdr, Color, X1, Y1, X2, Y2)

A0 A1 D0 D1 D2 D3 D4

DrawRtgLine(struct RtgScreen *, APTR, ULONG, LONG, LONG, LONG, LONG)

FUNCTION
Draws a line on the screen which will be clipped if necessary.
NOTE : X1<=X2 AND Y1<=Y2 !!!

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.
BufferAdr - The address of the memory containing the actual

screen graphics
Color - Color number
X1,Y1,X2,Y2 - Draws a line from (X1,Y1) to (X2,Y2)

SEE ALSO

OpenRtgScreen()
,
DrawRtgLineRGB()

Testfile 9 / 50

1.8 rtgmaster.library/DrawRtgLineRGB

NAME
DrawRtgLineRGB - draws a line on a RtgScreen

SYNOPSIS
DrawRtgLineRGB(RtgScreen, BufferAdr, Color, X1, Y1, X2, Y2)

A0 A1 D0 D1 D2 D3 D4

DrawRtgLineRGB(struct RtgScreen *, APTR, ULONG, LONG, LONG, LONG, LONG)

FUNCTION
Draws a line on the screen which will be clipped if necessary.
NOTE: X1<=X2 AND Y1<=Y2 !!!

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.
BufferAdr - The address of the memory containing the actual

screen graphics
Color - A 32-bit value describing the color
X1,Y1,X2,Y2 - Draws a line from (X1,Y1) to (X2,Y2)

SEE ALSO

OpenRtgScreen()
,
DrawRtgLine()

1.9 rtgmaster.library/FillRtgRect

NAME
FillRtgRect - draws a filled rectangle to a RtgScreen

SYNOPSIS
FillRtgRect(RtgScreen, BufferAdr, Color, Left, Top, Width, Height)

A0 A1 D0 D1 D2 D3 D4

FillRtgRect(struct RtgScreen *, APTR, ULONG, ULONG, ULONG, ULONG, ULONG)

FUNCTION
Draws a filled rectangle at the specified position on a RtgScreen.
The BufferAdr is the starting address of the buffer the users wants
to draw the rectangle in. The user has obtained this address using
LockRtgScreen() and GetBufAdr(). The BufferAdr is needed to specify
the correct buffer for screens which are double or triple buffered.

This function should only work for Palette mapped modes, Color is
the Color number of the palette.

Testfile 10 / 50

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.
BufferAdr - The address of the memory containing the actual

screen graphics
Color - Color number
Left - X position of the top-left of the rectangle
Top - Y position of the top-left of the rectangle
Width - Width of the rectangle in pixels
Height - Height of the rectangle in pixels

SEE ALSO

OpenRtgScreen()
,
FillRtgRectRGB()

1.10 rtgmaster.library/FillRtgRectRGB

NAME
FillRtgRectRGB - draws a filled rectangle to a RtgScreen

SYNOPSIS
FillRtgRectRGB(RtgScreen, BufferAdr, Color, Left, Top, Width, Height)

A0 A1 D0 D1 D2 D3 D4

FillRtgRectRGB(struct RtgScreen *, APTR, ULONG, ULONG, ULONG, ULONG, ULONG ←↩
)

FUNCTION
Draws a filled rectangle at the specified position on a RtgScreen.
The BufferAdr is the starting address of the buffer the users wants
to draw the rectangle in. The user has obtained this address using
LockRtgScreen() and GetBufAdr(). The BufferAdr is needed to specify
the correct buffer for screens which are double or triple buffered.

This function should only work for True Color modes, Color is
a 32 bit value which specifies what Color the pixel should be.
The layout of this 32-bit value is as follows:

%aaaaaaaa.rrrrrrrr.gggggggg.bbbbbbbb

a = AlphaChannel (8-bits) which may or may not be ignored. The
user will set this to zero if the user doesn’t want to use
AlphaChannel.

r = Red component (8-bits) of the 24-bit RGB value
g = Green component (8-bits) of the 24-bit RGB value
b = Blue component (8-bits) of the 24-bit RGB value

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.

Testfile 11 / 50

BufferAdr - The address of the memory containing the actual
screen graphics

Color - A 32-bit value describing the color (see above)
Left - X position of the top-left of the rectangle
Top - Y position of the top-left of the rectangle
Width - Width of the rectangle in pixels
Height - Height of the rectangle in pixels

SEE ALSO

OpenRtgScreen()
,
FillRtgRect()

1.11 rtgmaster.library/FreeRtgScreenModeReq

NAME
FreeRtgScreenModeReq - frees the ScreenReq structure again

SYNOPSIS
FreeRtgScreenModeReq(myreq)

A0

FreeRtgScreenModeReq(struct ScreenReq *)

FUNCTION
This function frees the memory allocated by RtgScreenModeReq again.
Should be called after you need that data not any longer. Note: This
function caused a system crash with an early Beta Version of rtgmaster. ←↩

library.
This does no longer happen, as this bug got fixed. This function is
only in the master-library, not in the sublibraries.

INPUTS
myreq - The ScreenReq Structure returned by RtgScreenModeReq

SEE ALSO

RtgScreenModeReq()

1.12 rtgmaster.library/FreeScreenModes

NAME
FreeScreenModes - frees a list of screenmodes

SYNOPSIS
FreeScreenModes(array of screenmodes)

A0

FreeScreenModes(APTR)

Testfile 12 / 50

FUNCTION
This function should free a previously with GetScreenModes()
allocated list of ScreenMode structures, including everything else
GetScreenModes() allocated. Be prepared to handle a NULL pointer.
THIS FUNCTION IS ONLY IN SUBLIBRARIES, NOT IN THE MASTER-LIBRARY
ITSELF. IT IS ONLY CALLED BY RTGMASTER.LIBRARY ITSELF.

INPUTS
array - an array of ScreenMode structures or NULL

SEE ALSO

GetScreenModes()

1.13 rtgmaster.library/GetBufAdr

NAME
GetBufAdr -- Get the address for one of the buffers from a

multi-buffered RtgScreen

SYNOPSIS
address = GetBufAdr(RtgScreen, Buffer)
D0 A0 D0

APTR GetBufAdr(ULONG, ULONG)

FUNCTION
If the user is using multi-buffered screens, it might be usefull
to know where the two buffers start in memory. After a
LockRtgScreen() the user can call this function with a RtgScreen
handle and a number to get the address of the corresponding
buffer.

The address is only valid if the RtgScreen is currently locked
using LockRtgScreen().

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.
Buffer - The buffer number the user wants the address of

RESULTS
address - the address of the buffer, or NULL for failure

SEE ALSO

LockRtgScreen()
,
OpenRtgScreen()

Testfile 13 / 50

1.14 rtgmaster.library/GetRtgScreenData

NAME
GetRtgScreenData -- Fills a TagList with data about the RtgScreen

SYNOPSIS
GetRtgScreenData(RtgScreen, TagList)

A0 A1

GetRtgScreenData(ULONG, struct TagItem *)

FUNCTION
This function should fill the TI_DATA fields of the passed in
TagList with the requested information.

See for available tags and descriptions in the .i/.h file.

NOTE: Starting with sublibrary V2.2, this function can also
be used to find out to what BUSSYSTEM a Graphics Board is
connected. In the original design of rtgmaster an extra function
was intended for that, but now it is the job of GetRtgScreenData.

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.
TagList - TagList which should be filled in with requested info.

SEE ALSO

OpenRtgScreen()
,
GetBufAdr()

1.15 rtgmaster.library/GetScreenModes

NAME
GetScreenModes - builds a list of available screenmodes

SYNOPSIS
array of ScreenMode structures = GetScreenModes()
D0

APTR GetScreenModes()

FUNCTION
This function should return a linked list of ScreenMode structures
describing all the available ScreenModes available to this
sublibrary. If there aren’t any, or you couldn’t allocate the
memory for the list then return 0. THIS FUNCTION IS ONLY IN SUBLIBRARIES,
NOT IN THE MASTER-LIBRARY ITSELF. IT IS ONLY CALLED BY RTGMASTER.LIBRARY
ITSELF.

RESULTS

Testfile 14 / 50

array - an array of ScreenMode structures or NULL

SEE ALSO

FreeScreenModes()

1.16 rtgmaster.library/GetSegment

NAME
GetSegment - get the active segment or ~0

SYNOPSIS
segnum = GetSegment()
D0

ULONG GetSegment()

FUNCTION
If the graphic board works in segment mode -- with a
memory window of 64 KByte -- you will get the number of the
active segment after calling this function.

If the graphic board works non segmented, you will get
~0 (= 0xFFFFFFFF) as a result to this call.

RESULTS
segnum - number of active segment, or -1 if the board works

non-segmented

SEE ALSO

SetSegment()

1.17 rtgmaster.library/GetUDPName

NAME
GetUDPName - Get the sockaddr_in structure of a UDP Client/Server

SYNOPSIS
name = GetUDPName(SocketBase, sock)

A0 A1

struct sockaddr_in *GetUDPName(struct Library *, struct RTG_Socket *)

FUNCTION
If this is UDP, you will get the sockaddr_in structure of a Client/Server,
else you will get 0. For what this is intended, read RtgRecv/RtgSend/ ←↩

RtgInAdr.
And of course the Docs of rtgmaster.library where detailed information ←↩

about

Testfile 15 / 50

TCP, IP and UDP is found.

NOTE: It might appear strange to you, that you have to open bsdsocket. ←↩
library

yourselves and provide it as parameter. This is needed because of some ←↩
internal

problems of AmiTCP, that make it IMPOSSIBLE opening it inside a library. ←↩
Look

at the Docs for more information.

You do NOT have to use rtgmaster.library’s Graphics Board features to
use rtgmaster.library’s TCP/IP features, if you do not WANT to...

INPUTS
SBase - Result of the call (C Syntax here...)

SBase = OpenLibrary("bsdsocket.library",0);
Socket - The Socket of the Client you want to close.

You should ONLY use this function for Clients,
NOT FOR SERVERS !!!

RESULTS
name - The sockaddr_in structure of the Client/Server

SEE ALSO

OpenClient()
,
OpenServer()

,
CloseServer()

,
RunServer()

,
RtgSend()

RtgRecv()
,
RtgAccept()

,
RtgIoctl()

,
RtgInAdr()

1.18 rtgmaster.library/LoadRGBRtg

NAME
LoadRGBRtg - changes one or more colors of a RtgScreen

SYNOPSIS
LoadRGBRtg(RtgScreen, Table)

A0 A1

LoadRGBRtg(ULONG, APTR)

Testfile 16 / 50

FUNCTION
Enables the user to change one or more colors of his/her screen.
This function only works for RtgScreens which have a palette, and
thus won’t work for the True-color modes.

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.
Table - A pointer to a series of records which describe which

colors to modify

NOTES
Passing a NULL Table must be ignored. The format of the Table
passed is a series of records, each with the this format:

WORD Count value: Number of colors to load
WORD Number of first color to be loaded

After these two words, a list of 3 Longs follow as many times
as specified by the first word. These 3 longwords represent the
left justified 32 bit RGB value.

And then the list repeats until ended with a count value of 0.

See for more information about the table graphics/LoadRGB32.
This function must use the same format.

SEE ALSO

OpenRtgScreen()
, graphics/LoadRGB32()

1.19 rtgmaster.library/LockRtgScreen

NAME
LockRtgScreen -- Locks a RtgScreen (prevents it from being moved

in memory)

SYNOPSIS
address = LockRtgScreen(RtgScreen)
D0 A0

APTR LockRtgScreen(ULONG)

FUNCTION
This function should make sure that the screen is not moved from
it’s current location in memory. In other words, it will guarantee
that the address you get back from this function remains valid
until you call UnlockRtgScreen().

The result from this function should be the address of the buffer
associated with the screen either in the graphics cards own

Testfile 17 / 50

memory or the computers memory.

For multi-buffered screens the return-address must point to buffer
0 for this RtgScreen. To get the addresses of the other
buffers the user will use GetBufAdr().

LockRtgScreen and UnlockRtgScreen functions must nest, which means
you must call an UnlockRtgScreen for every LockRtgScreen. The
field rs_Locks in the RtgScreen structure should be used to keep
track of the number of times a screen was locked.

Note : On some Graphics Boards this function will take some
CPU time to happen, so it is advised ONLY to call it *once* at the start
of your code (And UnlockRtgScreen *once* at the end of your code,
to be on the sure side...)

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.

RESULTS
address - The address of the (first) buffer of this screen.

SEE ALSO

UnlockRtgScreen()
,
OpenRtgScreen()

,
GetBufAdr()

1.20 rtgmaster.library/OpenClient

NAME
OpenClient -- Open a TCP/IP Client

SYNOPSIS
Socket = OpenClient(SBase,host,port,mode,protocol)
D0 A0 A1 D0 D1 D2

struct RTG_Socket *OpenClient(struct Library *,char *,int,int,int)

FUNCTION
For TCP, this function opens a "virtual connection" between two ←↩

applications.
For UDP it creates a socket that can be used by the application to
transfer data connectionless to other applications.
This function is the "Client part" of the connection. The protocol
being used is TCP/IP.

For more information, look at the docs. There is a chapter about
"TCP/IP programming for newcomers", that shows you, how to support
netework gaming for your computer game, even if you never heard of
TCP/IP before :) Up to now rtgmaster.library only supports the

Testfile 18 / 50

"protocol stack" AmiTCP, no AS225 support up to now. Runs for sure
with AmiTCP 4.0 demo from Aminet, i do not know about earlier versions.

NOTE: It might appear strange to you, that you have to open bsdsocket. ←↩
library

yourselves and provide it as parameter. This is needed because of some ←↩
internal

problems of AmiTCP, that make it IMPOSSIBLE opening it inside a library. ←↩
Look

at the Docs for more information.

You do NOT have to use rtgmaster.library’s Graphics Board features to
use rtgmaster.library’s TCP/IP features, if you do not WANT to...

INPUTS
SBase - Result of the call (C Syntax here...)

SBase = OpenLibrary("bsdsocket.library",0);
host - hostname of the "Server", to which you want to connect your

application (for example "194.55.101.26").
port - The port your application uses. For example 4000.

Be sure to use a number bigger than 3000, small numbers
are often used for different protocols in TCP/IP. For example
21 is telnet.

mode - The mode of the connection. Up to now only SOCK_STREAM is
supported ("virtual connection using a datastream").
SOCK_DGRAM probably will give you a UDP connection, but
I do not know enough about UDP to make this really working..
maybe in a future version...

protocol - The protocol To be used. Set this to 0 currently.
mode SOCK_STREAM and protocol 0 will result in a TCP connection ←↩

.

RESULTS
Socket - The "Socket" of the Application. See more in the docs.

SEE ALSO

OpenServer()
,
CloseClient()

,
CloseServer()

,
RunServer()

,
RtgSend()

RtgRecv()
,
RtgAccept()

,
RtgIoctl()

,
GetUDPName()

,
RtgInAdr()

Testfile 19 / 50

1.21 rtgmaster.library/OpenRtgScreen

NAME
OpenRtgScreen -- Open a screen

SYNOPSIS
RtgScreen = OpenRtgScreen(ScreenReq, RtgTags)
D0 A0 A1

struct RtgScreen *OpenRtgScreen(struct ScreenReq *, struct TagItem *)

FUNCTION
This function should open the screen which falls within the
parameters specified by the user. If this function can’t
deliver such a screen than it will fail and will return zero.

Note that the Width and Height values you get from
rtgmaster.library have been checked to see if they are valid
for this screenmode. Also note that RtgTags may be zero.

INPUTS
RtgTags - Pointer to (an array of) TagItem structures,

terminated by the value TAG_END (0).
ScreenReq - ScreenReq structure as returned by RtgScreenModeReq()

of rtgmaster.library, see rtg.i for more information

Each TagItem is an optional tagged data structure which
identifies a parameter to OpenRtgScreen(). The applicable tag ID
values for TagItem.ti_Tag and their corresponding data can be
found in the .i/.h file where the Tags for OpenRtgScreen() are
specified.

RESULTS
RtgScreen - A handle for the screen you opened. The user may

later use this handle to get information about
this screen or perform actions like setting the
palette or double/triple buffering. You should
returns NULL if the screen couldn’t be opened.

SEE ALSO

CloseRtgScreen

1.22 rtgmaster.library/OpenServer

NAME
OpenServer - Opens a TCP/IP Server

Testfile 20 / 50

SYNOPSIS
Socket=OpenServer(SBase,port,mode,protocol)
D0 A0 D0 D1 D2

struct TCP_Connect *OpenServer(struct Library *,int,int,int)

FUNCTION
For TCP this function opens a "virtual connection" between two ←↩

applications.
For UDP it creates a server that UDP clients can access.

This function is the "Server part" of the connection. The protocol
being used is TCP/IP. Up to now, as to the "transport protocol", only
TCP is supported, no UDP (maybe in a future version ???)
For more information, look at the docs. There is a chapter about
"TCP/IP programming for newcomers", that shows you, how to support
netework gaming for your computer game, even if you never heard of
TCP/IP before :) Up to now rtgmaster.library only supports the
"protocol stack" AmiTCP, no AS225 support up to now. Runs for sure
with AmiTCP 4.0 demo from Aminet, i do not know about earlier versions.

NOTE: It might appear strange to you, that you have to open bsdsocket. ←↩
library

yourselves and provide it as parameter. This is needed because of some ←↩
internal

problems of AmiTCP, that make it IMPOSSIBLE opening it inside a library. ←↩
Look

at the Docs for more information.

You do NOT have to use rtgmaster.library’s Graphics Board features to
use rtgmaster.library’s TCP/IP features, if you do not WANT to...

INPUTS
SBase - Result of the call (C Syntax here...)

SBase = OpenLibrary("bsdsocket.library",0);
port - The port your application uses. For example 4000.

Be sure to use a number bigger than 3000, small numbers
are often used for different protocols in TCP/IP. For example
21 is telnet.

mode - The mode of the connection. Up to now only SOCK_STREAM is
supported ("virtual connection using a datastream").
SOCK_DGRAM probably will give you a UDP connection, but
i do not know enough about UDP to make this really working...
maybe in a future version...

protocol - The protocol To be used. Set this to 0 currently.
mode SOCK_STREAM and protocol 0 will result in a TCP connection ←↩

.

RESULTS
Socket - The "Socket" of the Application. See more in the docs.

SEE ALSO

OpenClient()
,
CloseClient()

,

Testfile 21 / 50

CloseServer()
,
RunServer()

,
RtgSend()

RtgRecv()
,
RtgAccept()

,
RtgIoctl()

,
GetUDPName()

,
RtgInAdr()

1.23 rtgmaster.library/RtgAccept

NAME
RtgAccept - Let the server accept a connection deminded by a Client

SYNOPSIS
Socket=RtgAccept(SBase,Socket)
D0 A0 A1

struct RTG_Socket *RtgAccept(struct Library *,struct RTG_Socket *)

FUNCTION
If you do not use the RunServer function (you do not use it, if you only
do a point-to-point connection), you have to do this call on Server side
to wait for the Client to connect. If you use RunSercer, DO NOT USE IT. It
is only for connecting exactly TWO systems (one being the server, one the
client), not for connecting ONE server with SEVERAL clients...

Also do not use it for UDP connection. RtgAccept is only needed for TCP.
It does not work with UDP.

NOTE: It might appear strange to you, that you have to open bsdsocket. ←↩
library

yourselves and provide it as parameter. This is needed because of some ←↩
internal

problems of AmiTCP, that make it IMPOSSIBLE opening it inside a library. ←↩
Look

at the Docs for more information.

You do NOT have to use rtgmaster.library’s Graphics Board features to
use rtgmaster.library’s TCP/IP features, if you do not WANT to...

INPUTS
SBase - Result of the call (C Syntax here...)

SBase = OpenLibrary("bsdsocket.library",0);
Socket - the Socket of the Server

Testfile 22 / 50

RESULTS
Socket - The "Socket" of the Client, that connected. See more in the

docs.

SEE ALSO

OpenClient()
,
CloseClient()

,
CloseServer()

,
RunServer()

,
RtgSend()

RtgRecv()
,
RtgIoctl()

,
GetUDPName()

,
RtgInAdr()

1.24 rtgmaster.library/RtgBlit

NAME
RtgBlit - Performs a Blit without waiting

SYNOPSIS
RtgBlit(RtgScreen,SrcBuf,DstBuf,SrcX,SrcY,DstX,DstY,Width,Height,Minterm)

A0 a1 a2 d0 d1 d2 d3 d4 d5 d6

void RtgBlit(struct RtgScreen *, ULONG, ULONG, ULONG, ULONG, ULONG, ULONG, ←↩
ULONG, ULONG,UBYTE)

FUNCTION
This function blits the rectangle at (SrxX,SrcY) in the Buffer with the
NUMBER SrcBuf (0-2) to the position (DstX,DstY) in the Buffer with the
NUMBER DstBuf (0-2). The Blit has Width Width and Height Height.

For most GFX Boards this function is the fastest way to move
graphics data.

Note : On some boards (for example EGS Boards) this function might
wait on the Blitter to be finished as this can’t be done in an
other way with these boards. For these boards WaitRtgBlit simply
does nothing.

Note : The source and the destination rectangle should NOT OVERLAP !!!

Valid minterms : $30,$50,$60,$80, $C0. NO OTHER MINTERMS ARE VALID.
OTHER MINTERMS MIGHT WORK WITH SOME SUBLIBRARIES, BUT PROBABLY NOT WITH
ALL SUBLIBRARIES.

Testfile 23 / 50

Note: This function MIGHT or MIGHT NOT work with some of the Minterms
on rtgEGS.library... at least for $C0 it works for all... for the rest...
i do not see myself as Betatester of half-finished WB-Emulations...

INPUTS
RtgScreen - The RtgScreen where the Blit should happen
SrcBuf - The Buffer NUMBER (not address !!!) of the Source Buffer
DstBuf - The Buffer NUMBER (not address !!!) of the Destination Buffer
SrcX - The X coordinate of the source Rectangle
SrcY - The Y coordinate of the source Rectangle
DstX - The X coordinate of the Destination Rectangle
DstY - The Y coordinate of the Destination Rectangle
Width - The Width of the Blit
Height - The Height of the Blit
minterm - the minterm of the Blit, defined as usual

SEE ALSO

OpenRtgScreen()
,
WaitRtgBlit()

,
SwitchScreens()

1.25 rtgmaster.library/RtgBltClear

SYNOPSIS
RtgBltClear(RtgScreen,BufNum,xpos,ypos,width,height)

RtgBltClear(struct RtgScreen *,ULONG,ULONG,ULONG,ULONG,ULONG)

FUNCTION
This function clears a rectangular area using the GFX Board
blitter. For people who wonder, why i did not implement that
the "usual" way, like done in graphics.library : The graphics.library
function would not be possible under EGS, therefor i did it
this way. The function usually does not wait for the Blitter,
use WaitRtgBlit for this (unless under EGS... like explained
in RtgBlit and WaitRtgBlit...)

INPUTS
RtgScreen - The RtgScreen
BufNum - The NUMBER of the concerned Buffer, between 0 and 2 (NOT the

buffer address !!!)
xpos - the start x position of the rectangle to be cleared
ypos - the start y position of the rectangle to be cleared
width - the width of the rectangle
height - the height of the rectangle

SEE ALSO

RtgBlit()
,

Testfile 24 / 50

WaitRtgBlit()

1.26 rtgmaster.library/RtgClearPointer

NAME
RtgClearPointer - resets the pointer to its default image

SYNOPSIS
RtgClearPointer(RtgScreen)

A0

void RtgClearPointer(struct RtgScreen *)

FUNCTION
This restores the default image of the mousepointer. This is
very useful, if you changed it with RtgSetPointer, but sometimes
want the default pointer image, too. The pointer is only changed
on THIS RtgScreen.

INPUTS
RtgScreen - The RtgScreen, which pointer should be resetted...

NOTES
Not implemented yet on rtgPICA.library and rtgEGS.library

SEE ALSO

RtgSetPointer()

1.27 rtgmaster.library/RtgCloseFont

NAME
RtgCloseFont - closes an AmigaFont

SYNOPSIS
RtgCloseFont(RtgScreen,font)

A0 A1

void RtgCloseFont(struct RtgScreen *,void *)

FUNCTION
This function closes an AmigaFont on a RtgScreen, much the
same way, like OpenDiskFont does for Intuition Screens.
The font parameter of the call is not for all WB Emulations
a TextFont pointer. Don’t use CloseFont with rtgmaster.library,
use RtgCloseFont, for the best possible compatibility with
all Sublibraries !!!

INPUTS
RtgScreen - an RtgScreen

Testfile 25 / 50

font - a Font pointer. the structure of it is PRIVATE
to rtgmaster.library (and not the same for all
sublibraries...)

NOTES
Not yet implemented for rtgPICA.library

SEE ALSO

RtgOpenFont()
,
RtgSetFont()

,
RtgSetTextMode()

,
RtgText()

,
RtgSetTextModeRGB()

1.28 rtgmaster.library/RtgInAdr

NAME
RtgInAdr - Find out the IP Address of a Receiver/Sender

SYNOPSIS
ip = RtgInAdr(SBase,si)
D0 A0 A1

char *RtgInAdr(struct Library *,struct sockaddr_in *)

FUNCTION
This function finds out the IP Address of a Receiver/Sender.
You get back the sockaddr_in structure of a receiver/sender by
RtgRecv/RtgSend or by using GetUDPName. This function ONLY
works for UDP, not for TCP !!! It is used to differentiate
Clients running on different machines from each other, if
one does a Multiple Client "connection" (should not be called
like that, as UDP is connectionless, but do you know a better
term ?), without using RunServer...

Of course this function can’t differentiate multiple Clients
running on the same machine...

NOTE: It might appear strange to you, that you have to open bsdsocket. ←↩
library

yourselves and provide it as parameter. This is needed because of some ←↩
internal

problems of AmiTCP, that make it IMPOSSIBLE opening it inside a library. ←↩
Look

at the Docs for more information.

You do NOT have to use rtgmaster.library’s Graphics Board features to
use rtgmaster.library’s TCP/IP features, if you do not WANT to...

Testfile 26 / 50

INPUTS
SBase - Result of the call (C Syntax here...)

SBase = OpenLibrary("bsdsocket.library",0);
si - Special structure returned by above mentioned calls

RESULTS
ip - IP Address as string (for example "194.55.101.26")

SEE ALSO

OpenServer()
,
OpenClient()

,
CloseClient()

,
CloseServer()

,
RunServer()

RtgSend()
,
RtgAccept()

,
GetUDPName()

1.29 rtgmaster.library/RtgInitRDCMP

NAME
RtgInitRDCMP - Inits the rtgmaster direct communication message port

(RDCMP)

SYNOPSIS
result = RtgInitRDCMP(RtgScreen)
d0 a0

struct RDCMPData *RtgInitRDCMP(struct RtgScreen *)

FUNCTION
Inits the input port of rtgmaster. Returns 0, if initialization failed (←↩

for example,
if sublibrary does not support RDCMP), something >0 else. The port has to ←↩

be initialized
once after Screen-Opening. The result will be a pointer to :

struct RDCMPData
{
struct MsgPort *port;
ULONG signal;
WORD *MouseX;
WORD *MouseY;

};

Port is the MessagePort of the RtgScreen. NOTE: Better do NOT use

Testfile 27 / 50

that port, the way it handles events, might differ according to the
WB Emulation you use, better use the RtgGetMsg function to get
Messages !!!
The Port was only included, as the coder of a certain game wanted this.

Signal will contain the 1<<mp_SigBit of the MessagePort of the RtgScreen
for fast Input-Handling.

MouseX and MouseY contain POINTERS to the current mouse position. This ←↩
sort

of checking is faster than using GetRtgScreenData for the mouse position.

NOTE: All RDCMP/Font/Text functions won’t work on the rtgPICA.library,due
to the Original Picasso II WB Emulation having some limitations (you only ←↩

get
Direct Video RAM Access *OR* IDCMP/Font/Text).

INPUTS
RtgScreen - The Screen, which port is to init

RESULTS
result - 0, if failed, something else, if succeeded

NOTES
RDCMP supports both waiting and polling !!!
As to my experiences, better use RDCMP than anything else...
other methods i tried tended to lose mouseclicks, if
they came very fast, and if the application took a lot
of processing time. RDCMP does not lose data.

SEE ALSO

RtgWaitRDCMP()
,
RtgGetMsg()

,
RtgReplyMsg()

1.30 rtgmaster.library/RtgIoctl

NAME
RtgIoctl - Set a Socket to "Blocking" or to "Non-Blocking" mode

SYNOPSIS
result = RtgIoctl(SBase,Socket,arg)
D0 A0 A1 A2

int RtgIoctl(struct Library *,struct RTG_Socket *,long *)

FUNCTION
This function determins, if RtgRecv and RtgSend will WAIT will the data
was transmitted, or if they fail, if the data currently could not be
transmitted. If arg POINTS to the VALUE 1, we have "non-blocking" (it
does not wait), if it POINTS to 0, we have "blocking" (it waits). Default

Testfile 28 / 50

(if you do not call RtgIoctl at all) is "blocking".

NOTE: It might appear strange to you, that you have to open bsdsocket. ←↩
library

yourselves and provide it as parameter. This is needed because of some ←↩
internal

problems of AmiTCP, that make it IMPOSSIBLE opening it inside a library. ←↩
Look

at the Docs for more information.

You do NOT have to use rtgmaster.library’s Graphics Board features to
use rtgmaster.library’s TCP/IP features, if you do not WANT to...

RtgIoctl is a VERY CPU TIME INTENSIVE FUNCTION !!!
Only call it during the INITIALIZATION of the network !!!

My suggestion : Run the server in "blocking" mode, the Clients in
"nonblocking" mode... seems to be the fastest...

INPUTS
SBase - Result of the call (C Syntax here...)

SBase = OpenLibrary("bsdsocket.library",0);
Socket - The Socket of the application, which socket is to be modified
arg - "Non-Blocking" or "Blocking" (a pointer)

RESULTS
result - 0 on success, -1 on fail (should not fail,normally...)

SEE ALSO

OpenServer()
,
OpenClient()

,
CloseClient()

,
CloseServer()

,
RunServer()

,

RtgSend()
,
RtgRecv()

,
GetUDPName()

,
RtgInAdr()

1.31 rtgmaster.library/RtgOpenFont

NAME
RtgOpenFont - opens an AmigaFont

Testfile 29 / 50

SYNOPSIS
font = RtgOpenFont(RtgScreen,ta)
D0 A0 A1

void * RtgOpenFont(struct RtgScreen *,struct TextAttr *)

FUNCTION
This function loads an AmigaFont to memory, for the usage on
a RtgScreen, much the same way, like OpenDiskFont does for
Intuition Screens. ta is a normal TextAttr pointer, like
for OpenDiskFont for diskfont.library, but the RESULT
is not for all WB Emulations a TextFont pointer. Don’t use
OpenDiskFont or OpenFont with rtgmaster.library, use
RtgOpenFont, for the best possible compatibility with
all Sublibraries !!!

INPUTS
RtgScreen - an RtgScreen
ta - a TextAttr structure, like defined in graphics/text.i (or .h)

RESULTS
font - A pointer to a font pointer. It’s internal structure is

PRIVATE to rtgmaster.library, and NOT THE SAME for all
sublibraries

NOTES
Not yet implemented for rtgPICA.library

SEE ALSO

RtgCloseFont()
,
RtgSetFont()

,
RtgSetTextMode()

,
RtgText()

,
RtgSetTextModeRGB()

1.32 rtgmaster.library/RtgRecv

NAME
RtgRecv - The Socket of this application receives data from a connected

socket

SYNOPSIS
length = RtgRecv(SBase,Socket,message,sender,len)
D0 A0 A1 A2 A3 D0

int RtgRecv(struct Library *,struct RTG_Socket *,struct char *,struct ←↩
sockaddr_in *,int)

FUNCTION

Testfile 30 / 50

This function is no longer compatible to rtgmaster.library V6 and below ←↩
!!!

This function gets data to the application that is sent to its socket by a ←↩
socket

that is connected to the socket of the Application (it is not that ←↩
difficult to

understand like it sounds... read the docs :))

If the "virtual connection" (or the "connectionless connection" or what ←↩
this is called

for UDP... :)) is "blocking", it WAITS, if there is no message available
on the socket, till one is available. If it is "non-blocking", it returns ←↩

-1, if no
message is available (see RtgIoctl for more details about "blocking" and " ←↩

Non-Blocking".
The default is "Blocking", BTW...)

Sender is a special structure that you can use to find out from what IP ←↩
Address

the message was sent. You can convert it to an IP Address using RtgInAdr. ←↩
This

only works with UDP (with TCP, you differentiate Clients from each other ←↩
with the

socket number...). Appearently, you CAN’T differentiate Clients that run ←↩
on the

same machine !!! Sender is NOT allocated by the function, you have to ←↩
provide

the structure...

For TCP you simple provide a 0 for Sender. It will be ignored.

You can use this feature to do multiple connection without using RunServer ←↩
(that

does not support UDP up to now anyways...).

NOTE: For *TCP* you provide the Socket of the Application which you want ←↩
to

contact. For *UDP* you provide your OWN’S Socket. Important difference !!!

NOTE: It might appear strange to you, that you have to open bsdsocket. ←↩
library

yourselves and provide it as parameter. This is needed because of some ←↩
internal

problems of AmiTCP, that make it IMPOSSIBLE opening it inside a library. ←↩
Look

at the Docs for more information.

You do NOT have to use rtgmaster.library’s Graphics Board features to
use rtgmaster.library’s TCP/IP features, if you do not WANT to...

NOTE: It is NOT possible to give Socket->s (the Socket Number) of a Client
to the Server using RtgRecv or RunServer !!! You will have to examine
inbuffer->num[x] to find out which Socket was the Sender !!! Also len
should NEVER be bigger than the actual message, or you might get a lot
of strange results !!!

Testfile 31 / 50

INPUTS
SBase - Result of the call (C Syntax here...)

SBase = OpenLibrary("bsdsocket.library",0);
Socket - The Socket of THIS application
message - The buffer, to which supplied messages will be put
Sender - The Function will fill in data about the Sender to this ←↩

structure.
len - The length of the message to wait for

RESULTS
length - The length of the message received. If it is smaller

than the message, you waited for, do a RtgRecv once more...
NOTE: If a message was received that is too long to fit to
the buffer, some Bytes might be discarded. So you should
not send more Bytes than you want to receive... use a standard
Package Size at best...

SEE ALSO

OpenClient()
,
CloseClient()

,
CloseServer()

,
RunServer()

,
RtgSend()

RtgRecv()
,
RtgIoctl()

,
GetUDPName()

,
RtgInAdr()

1.33 rtgmaster.library/RtgScreenAtFront

NAME
RtgScreenAtFront - determines if a RtgScreen is at front

SYNOPSIS
boolean = RtgScreenAtFront(RtgScreen)

A0

RtgScreenAtFront(struct RtgScreen *)

FUNCTION
This function should determine if this RtgScreen is currently at
front. It should return TRUE (0xfffffff) if the screen is in front
of all other screens, and FALSE (0) if the screen is behind (partially
or completely) an other screen.

Note that this function will not be heavily reliable, since the user

Testfile 32 / 50

might switch screens at any time.

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.

RESULTS
boolean - TRUE if screen is at front, FALSE otherwise.

SEE ALSO

OpenRtgScreen()

1.34 rtgmaster.library/RtgScreenModeReq

NAME
RtgScreenModeReq -- Opens a ScreenMode requester

SYNOPSIS
ScreenReq = RtgScreenModeReq(ScreenModeTags)
D0 A0

struct ScreenReq *RtgScreenModeReq(struct TagItem *)

FUNCTION
Opens a ScreenMode requester which displays all available
ScreenModes to the user, depending on the Tags which are passed
to this function. The functions returns a pointer to a
ScreenReq structure or NULL for failure or if the user
cancelled the requester.

The ScreenReq holds various information which the user selected,
like width, height, screenmode and depth.

THIS FUNCTION IS ONLY IN THE MASTER-LIBRARY. It handles the Screenmodes
for ALL sublibraries.

Note: The Screenmode-Requester provided with an early Beta of the
rtgmaster.library was VERY buggy. It got completely replaced by
a new one for this version of the library.

INPUTS
ScreenModeTags - Pointer to (an array of) TagItem structures,

terminated by the value TAG_END (0).

The description for the various tags can be found in the .i/.h
file (smr_Tags). NOTE: The Tags changed a lot since the early
Beta release of the library.

RESULTS
ScreenReq - A pointer to a ScreenReq structure or NULL for

failure

SEE ALSO

Testfile 33 / 50

OpenRtgScreen()
,
FreeRtgScreenModeReq()

1.35 rtgmaster.library/RtgSend

NAME
RtgSend - The Socket of this application sends data to a connected socket

SYNOPSIS
length = RtgSend(SBase,Socket,message,Receiver,len)
D0 A0 A1 A2 A3 D0

int RtgSend(struct Library *,struct RTG_Socket *,struct char *,struct ←↩
sockaddr_in *,int)

FUNCTION
This function is no longer compatible to rtgmaster.library V6 and below ←↩

!!!

This function puts data from the application to the socket of an ←↩
application

that is connected to the socket of the Application (it is not that ←↩
difficult to

understand like it sounds... read the docs :))

If the "virtual connection" (well, this term does not fit for UDP, as it ←↩
is

connectionless, but i do not know how to call it else... :)) is "blocking ←↩
",

it WAITS, if there is no message available on the socket, till one is ←↩
available.

If it is "non-blocking", it returns -1, if no message is available (see ←↩
RtgIoctl

for more details about "blocking" and "Non-Blocking".
The default is "Blocking", BTW...)

Receiver is a special structure that you can use to tell the receiver your ←↩
IP Address.

You get your IP Address with GetUDPName (works only for UDP... for TCP ←↩
this returns

0...). For TCP you provide simply 0 for Receiver, it will be ignored.
You can convert it to an IP Address using RtgInAdr. This
only works with UDP (with TCP, you differentiate Clients from each other ←↩

with the
socket number...). Appearently, you CAN’T differentiate Clients that run ←↩

on the
same machine !!!

You can use this feature to do multiple connection without using RunServer ←↩
(that

does not support UDP up to now anyways...).

Testfile 34 / 50

NOTE: For *TCP* you provide the Socket of the Application which you want ←↩
to

contact. For *UDP* you provide your OWN’S Socket. Important difference !!!

NOTE: It might appear strange to you, that you have to open bsdsocket. ←↩
library

yourselves and provide it as parameter. This is needed because of some ←↩
internal

problems of AmiTCP, that make it IMPOSSIBLE opening it inside a library. ←↩
Look

at the Docs for more information.

You do NOT have to use rtgmaster.library’s Graphics Board features to
use rtgmaster.library’s TCP/IP features, if you do not WANT to...

NOTE: It is NOT possible to give Socket->s (the Socket Number) of a Client
to the Server using RtgRecv or RunServer !!! You will have to examine
inbuffer->num[x] to find out which Socket was the Sender !!! Also len
should NEVER be bigger than the actual message, or you might get a lot
of strange results !!!

INPUTS
SBase - Result of the call (C Syntax here...)

SBase = OpenLibrary("bsdsocket.library",0);
Socket - The Socket of THIS application
message - The message to be sent (an ASCII string, actually...)
Receiver - The data you got from GetUDPName, tells the receiver your IP ←↩

address...
len - The length of the string to send ...

RESULTS
length - The length of the message sent. If it is smaller

than the message, you sent, do a RtgSend once more...
Probably the socket you sent to was quite busy with other
messages currently...

NOTE: If the send fails at all, maybe your message was too
long for TCP/IP ? (As to the allowed package sizes, 1 KB works
for sure... i do not know exactly how much more is possible...)

SEE ALSO

OpenClient()
,
CloseClient()

,
CloseServer()

,
RunServer()

,
RtgSend()

RtgRecv()
,
RtgIoctl()

,
GetUDPName()

Testfile 35 / 50

,
RtgInAdr()

1.36 rtgmaster.library/RtgSetFont

NAME
RtgSetFont - sets an AmigaFont to an RtgScreen

SYNOPSIS
RtgSetFont(RtgScreen,font)

A0 A1

void RtgSetFont(struct RtgScreen *,void *)

FUNCTION
This function sets an AmigaFont (that was opened using
RtgOpenFont tomemory before) to an RtgScreen. Following
RtgText() calls will use this font, now.

INPUTS
RtgScreen - an RtgScreen
font - a Font pointer. the structure of it is PRIVATE

to rtgmaster.library (and not the same for all
sublibraries...)

NOTES
Not yet implemented for rtgPICA.library

SEE ALSO

RtgCloseFont()
,
RtgSetFont()

,
RtgSetTextMode()

,
RtgText()

,
RtgSetTextModeRGB()

1.37 rtgmaster.library/RtgSetPointer

NAME
RtgSetPointer - sets the pointer to a new image

SYNOPSIS
RtgSetPointer(RtgScreen,pointer,Width,Height,OffsetX,OffsetY)

A0 A1 D0 D1 D2 D3

void RtgSetPointer(struct RtgScreen *,UWORD *,WORD,WORD,WORD,WORD)

Testfile 36 / 50

FUNCTION
This function sets the mousepointer to a new image for this RtgScreen.
The structure pointer is exactly the same like taken from intuition. ←↩

library
command SetPointer (the data definition of a Simple Sprite). Different
from this only is that the image HAS TO BE 16x18 pixels size. If you
want a smaller pointer, modify the Width/Height values and set that
pixels that you do not need to 0. But the SIZE of the structure has
to be 16x18 pixels (72 Bytes). An example :

UWORD Hoehe[2]
{

0x...,0x... // first line
...
0x...,0x... // 18th line

}

Look at graphics.library SimpleSprite documentation for more information
(01,10,11 are the three pointer colors,00 is transperent, each of
the two words of a line determines ONE BIT of the 2-Bit mousepointer).

INPUTS
RtgScreen - The RtgScreen, which pointer should be resetted...
pointer - pointer image, see above
Width - Actual Width of the pointer
Height - Actual Height of the pointer
OffsetX - Display Offset for the pointer, from the mouseposition
OffsetY - Display Offset for the pointer, from the mouseposition

NOTES
Not implemented yet on rtgPICA.library and rtgEGS.library

Do NOT specifically demand Chipram for the pointer array.
Else your program won’t run on the DraCo. rtgmaster.library will
handle this itself, that the pointer-image will end in
Chipram for ECS/AGA, in ANYTHING AVAILABLE on GFX Board system.
So simply allocate RAM for the pointer image, without simply
demanding Chipram or Fastram (as DraCo needs FastRam, and
ECS/AGA need Chipram here... but well... rtgmaster.library
takes care of this :))

SEE ALSO

RtgClearPointer()

1.38 rtgmaster.library/RtgGetMsg

NAME
RtgGetMsg - replies the message on an RDCMP

SYNOPSIS
imsg = RtgGetMsg(RtgScreen)
d0 a0

Testfile 37 / 50

void *RtgGetMsg(struct RtgScreen *)

FUNCTION
Gets the latest message of a RDCMP. RDCMP uses the
structures of the IntuiMessage of intuition (but note,
this is NOT an IDCMP... it only simulates the structures
of the IDCMP !!!)
List of the structures for those guys without OS includes
(look at intuition/intuition.h or .i) (ASM notation, as
C guys usually HAVE OS includes...)

STRUCTURE IntuiMessage,0

STRUCT im_ExecMessage,mn_SIZE

LONG im_Class

// For rtgmaster this is IDCMP_MOUSEBUTTONS or
// IDCMP_RAWKEY, as RDCMP only supports mousebuttons
// or keyboard events... look at this field to examine
// which event happened...

WORD im_Code

// For Keyboard events, here the Rawkey value of the pressed
// key is found... Bit 7 handles Keydown/Keyup, like usual...

// For mouse : SELECTUP,SELECTDOWN,...

WORD im_Qualifier

// The Qualifiers for CTRL,SHIFT,... each qualifier has a bit...

APTR im_IAddress

WORD im_MouseX
WORD im_MouseY

// Mouseposition, when the event happened...

LONG im_Seconds
LONG im_Micros

// systemtime, when the event happened

APTR im_IDCMPWindow

// Well, undefined for RDCMP, as rtgmaster not
// always uses Intuition :)

APTR im_SpecialLink

// Well... usually undefined for RDCMP... don’t acces
// it...

};

Testfile 38 / 50

IDCMP_MOUSEBUTTONS EQU 8
IDCMP_RAWKEY EQU 1024

SELECTUP EQU (IECODE_LBUTTON+IECODE_UP_PREFIX)
SELECTDOWN EQU (IECODE_LBUTTON)
MENUUP EQU (IECODE_RBUTTON+IECODE_UP_PREFIX)
MENUDOWN EQU (IECODE_RBUTTON)
MIDDLEUP EQU (IECODE_MBUTTON+IECODE_UP_PREFIX)
MIDDLEDOWN EQU (IECODE_MBUTTON)

out of devices/inputevents.i :

IECODE_LBUTTON EQU $68 ; also uses IECODE_UP_PREFIX
IECODE_RBUTTON EQU $69 ;
IECODE_MBUTTON EQU $6A ;

IEQUALIFIER_LSHIFT EQU $0001
IEQUALIFIER_RSHIFT EQU $0002
IEQUALIFIER_CAPSLOCK EQU $0004
IEQUALIFIER_CONTROL EQU $0008
IEQUALIFIER_LALT EQU $0010
IEQUALIFIER_RALT EQU $0020
IEQUALIFIER_LCOMMAND EQU $0040
IEQUALIFIER_RCOMMAND EQU $0080
IEQUALIFIER_MIDBUTTON EQU $1000
IEQUALIFIER_RBUTTON EQU $2000
IEQUALIFIER_LEFTBUTTON EQU $4000

but well, simply include the two OS includes, and you won’t have to
bother about this stuff... :)

INPUTS
RtgScreen - The Screen, which port is to be used

NOTES
RDCMP supports both waiting and polling !!!
As to my experiences, better use RDCMP than anything else...
other methods i tried tended to lose mouseclicks, if
they came very fast, and if the application took a lot
of processing time. RDCMP does not lose data.
Information about polling : See docs of RtgWaitRDCMP

SEE ALSO

RtgWaitRDCMP()
,
RtgInitRDCMP()

,
RtgReplyMsg()

1.39 rtgmaster.library/RtgReplyMsg

NAME
RtgReplyMsg - replies the message on an RDCMP

Testfile 39 / 50

SYNOPSIS
RtgReplyMsg(RtgScreen, imsg)

a0 a1

void RtgReplyMsg(struct RtgScreen *,void *)

FUNCTION
Replies the message on a RDCMP and tells the port, that the
message can be deleted now. Save all values of the message that
you need before this !!! Don’t access the structure itself
after the reply !!!

INPUTS
RtgScreen - The Screen, which port is to be used
imsg - the messages to be replied

NOTES
DOES NOT RUN ON rtgPICA.library up to now !!!
RDCMP supports both waiting and polling !!!
As to my experiences, better use RDCMP than anything else...
other methods i tried tended to lose mouseclicks, if
they came very fast, and if the application took a lot
of processing time. RDCMP does not lose data.

SEE ALSO

RtgWaitRDCMP()
,
RtgInitRDCMP()

,
RtgGetMsg()

1.40 rtgmaster.library/RtgSetTextMode

NAME
RtgSetTextMode - sets text color and drawing mode

SYNOPSIS
RtgSetTextMode(RtgScreen,fgcolor,bgcolor,drmode)

A0 D0 D1 D2

void RtgSetTextMode(struct RtgScreen *,UBYTE,UBYTE,UBYTE)

FUNCTION
Sets the foreground color, the background color and the drawing
mode for Text on this RtgScreen. drmodes are defined as usual
in graphics/rastport.i (or .h) : JAM1, JAM2, COMPLEMENT.
INVERSVID is not valid...

This function should only be used on Displays with depth <=8.

INPUTS
RtgScreen - an RtgScreen
fgcolor - Foreground color

Testfile 40 / 50

bgcolor - Background color
drwmode - Drawing mode, defined in graphics/rastport.i (or .h)

NOTES
Not yet implemented for rtgPICA.library

SEE ALSO

RtgOpenFont()
,
RtgSetFont()

,
RtgCloseFont()

,
RtgText()

,
RtgSetTextModeRGB()

1.41 rtgmaster.library/RtgSetTextModeRGB

NAME
RtgSetTextModeRGB - sets text color and drawing mode for depths >8

SYNOPSIS
RtgSetTextModeRGB(RtgScreen,fgcolor,bgcolor,drmode)

A0 D0 D1 D2

void RtgSetTextModeRGB(struct RtgScreen *,ULONG,ULONG,UBYTE)

FUNCTION
Sets the foreground color, the background color and the drawing
mode for Text on this RtgScreen. drmodes are defined as usual
in graphics/rastport.i (or .h) : JAM1, JAM2, COMPLEMENT.
INVERSVID is not valid...

Should only be used on Displays with depth >8.

NOTES
Due to a bug in CyberGraphX, this function does not work
very well with rtgCGX.library (strange colors...). Not yet
implemented in rtgPICA.library.

INPUTS
RtgScreen - an RtgScreen
fgcolor - Foreground color
bgcolor - Background color
drwmode - Drawing mode, defined in graphics/rastport.i (or .h)

SEE ALSO

RtgOpenFont()
,
RtgSetFont()

Testfile 41 / 50

,
RtgCloseFont()

,
RtgText()

,
RtgSetTextMode()

1.42 rtgmaster.library/RtgText

NAME
RtgText - displays Text on an RtgScreen

SYNOPSIS
RtgText(RtgScreen,buffer,string,length,xpos,ypos)

A0 A1 A2 D0 D1 D2

void RtgText(struct RtgScreen *,void *,char *,WORD,SHORT,SHORT)

FUNCTION
Displays the string "string" with the chosen font parameters (see
RtgSetFont(), RtgSetTextMode(), RtgSetTextModeRGB()) at position
xpos,ypos much the same way like Text() of graphics.library does.

INPUTS
RtgScreen - an RtgScreen
buffer - The buffer address of the buffer where to display the text
string - pointer to a string
length - length of the string in characters
xpos - the x-pos
ypos - the y-pos

NOTES
Not yet implemented for rtgPICA.library.

SEE ALSO

RtgOpenFont()
,
RtgSetFont()

,
RtgCloseFont()

,
RtgText()

,
RtgSetTextModeRGB()

RtgSetTextMode()

1.43 rtgmaster.library/RtgWaitRDCMP

Testfile 42 / 50

NAME
RtgWaitRDCMP - Waits on a message on the RDCMP of the Screen

SYNOPSIS
RtgWaitRDCMP(RtgScreen)

a0

void RtgWaitRDCMP(struct RtgScreen *)

FUNCTION
Waits on a message on the RDCMP. If you don’t want your
application to WAIT while the user is giving no inputs
(well, it usually should NOT wait for games...), use polling :

1. Open the Screen and init its RDCMP
2. Inside the loop, do RtgGetMsg
3. If imsg->Class is RDCMP_MOUSEBUTTONS or

RDCMP_RAWKEY, handle the message and reply it
using RtgReplyMsg

4. Else don’t reply it (if you reply a message when there
in fact is NO MESSAGE, you might crash the system !!!)

INPUTS
RtgScreen - The Screen, which port is to be used

NOTES
DOES NOT RUN ON rtgPICA.library up to now !!!

SEE ALSO

RtgInitRDCMP()
,
RtgGetMsg()

,
RtgReplyMsg()

1.44 rtgmaster.library/RtgWaitTOF

NAME
RtgWaitTOF - Wait for the top of the next video frame.

SYNOPSIS
WaitTOF(RtgScreen)

A0

WaitTOF(struct RtgScreen *)

FUNCTION
Wait for vertical blank to occur and all vertical blank
interrupt routines to complete before returning to caller.

Does not do anything at all with some sublibraries... (CyberGraphX does ←↩
not

Testfile 43 / 50

support TOF-Waiting up to now...)

INPUTS
The Screen Handle of the GFX Board Screen (only in FACT needed for rtgEGS. ←↩

library,
and probably nothing much is done about it anyway... but be nice... give ←↩

this
parameter... to stay compatible :))

RESULTS
Places this task on the TOF wait queue. When the vertical blank
interrupt comes around, the interrupt service routine will fire off
signals to all the tasks doing WaitTOF. The highest priority task
ready will get to run then.

SEE ALSO
graphics.library/WaitTOF()

1.45 rtgmaster.library/RunServer

NAME
RunServer -- Handle all the messaging for a server and several clients

SYNOPSIS
New_Socket = RunServer(SBase,Socket,in_buffer,out_buffer,maxplayers)
D0 A0 A1 A2 A3 D0

struct RTG_Socket *RunServer(struct Library *,struct RTG_Socket *,struct ←↩
RTG_Buff *,struct RTG_Buff *,int)

FUNCTION
You will have to run this fine
function in a loop. Every time it returns, it gives you the Socket of a ←↩

new connected
client or 0, if no new Client connected. Also, in in_buffer, you will ←↩

have all new
messages sent from already connected Clients to the server, and all ←↩

messages you filled
in in out_buffer before calling this function, will be sent to the Clients ←↩

.
If nothing happened, this function returns at once, with consuming nearly ←↩

no CPU time.

You SHOULD initialize the in_buffer.num values with -1 EACH TIME, before
RunServer is run, and the out_buffer.num values once before the FIRST TIME
RunServer is called !!!

NOTE: If you (later...) use RunServer, the Server can’t handle a Player. ←↩
You need

ONE CLIENT PER PLAYER AND AN ADDITIONAL SERVER WITHOUT A PLAYER. The ←↩
Server can run

on a system, where a Client is also running, though (should be the fastest ←↩
system in

the connection, probably, as it will have to do all that messaging to the ←↩
Client ...)

Testfile 44 / 50

NOTE: It might appear strange to you, that you have to open bsdsocket. ←↩
library

yourselves and provide it as parameter. This is needed because of some ←↩
internal

problems of AmiTCP, that make it IMPOSSIBLE opening it inside a library. ←↩
Look

at the Docs for more information.

You do NOT have to use rtgmaster.library’s Graphics Board features to
use rtgmaster.library’s TCP/IP features, if you do not WANT to...

NOTE: It is NOT possible to give Socket->s (the Socket Number) of a Client
to the Server using RtgRecv or RunServer !!! You will have to examine
inbuffer->num[x] to find out which Socket was the Sender !!! Also len
should NEVER be bigger than the actual message, or you might get a lot
of strange results !!!

NOTE: UP TO NOW (rtgmaster Version 7) ONLY SUPPORTS TCP... NO UDP SUPPORT ←↩
UP TO NOW !!!

INPUTS
SBase - Result of the call (C Syntax here...)

SBase = OpenLibrary("bsdsocket.library",0);
Socket - The Socket of THIS application (the Server...)
in_buffer - messages that arrived during the call of RunServer
out_buffer - messages that Run_Server should deliver
maxplayers - The Maximum of Clients allowed (CAN’T BE BIGGER THAN 12 !!!)

RESULTS
New_Socket - The Socket of a newly connected Client. Save it somewhere...

SEE ALSO

OpenClient()
,
CloseClient()

,
CloseServer()

,
RunServer()

,
RtgSend()

RtgRecv()
,
RtgIoctl()

,
GetUDPName()

,
RtgInAdr()

1.46 rtgmaster.library/SetSegment

Testfile 45 / 50

NAME
SetSegment -- set the active segment

SYNOPSIS
SetSegment(segnum)

D0

SetSegment(ULONG)

FUNCTION
If the graphic board works in segment mode -- with a
memory window of 64 KByte -- a call to SetSegment() sets
the active segment to the supplied number.

If the graphic board works non-segmented, a call to this
function has no effect.

INPUTS
segnum - number of segment

SEE ALSO

GetSegment()

1.47 rtgmaster.library/SwitchScreens

NAME
SwitchScreens -- Perform doublebuffering

SYNOPSIS
SwitchScreens(RtgScreen, Buffer)

A0 D0

SwitchScreens(ULONG, ULONG)

FUNCTION
RtgScreen passed in A0 is a handle of a screen previously opened
by OpenRtgScreen().

This functions is used to specify the buffer which should
be displayed starting from the next Vertical Blank. The buffer
supplied is a simple number (0 = first buffer, 1 = 2nd buffer
etcetera).

If the same buffer is being specified as is being displayed then
this function should do nothing.

This function will never be called from interupts.

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.
Buffer - The buffer number the user wishes to display

Testfile 46 / 50

SEE ALSO

OpenRtgScreen()
,
WaitRtgSwitch()

1.48 rtgmaster.library/UnlockRtgScreen

NAME
UnlockRtgScreen -- Unlocks a RtgScreen

SYNOPSIS
UnlockRtgScreen(RtgScreen)

A0

UnlockRtgScreen(ULONG)

FUNCTION
Unlocks a previously locked RtgScreen. If this screen hasn’t
been locked before this function will do nothing.

LockRtgScreen() and UnlockRtgScreen() functions nest, which means
the user must call an UnlockRtgScreen() for every LockRtgScreen().
If not the user will end up with a permenantly locked screen.

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.

SEE ALSO

LockRtgScreen()

1.49 rtgmaster.library/WaitRtgBlit

NAME
WaitRtgBlit - Waits on the Blitter to be finished

SYNOPSIS
WaitRtgBlit(RtgScreen)

A0

WaitRtgBlit(struct RtgScreen *)

FUNCTION
Waits for the GFX Board Blitter to be finished. For those who wonder,
why RtgScreen has to be given as parameter... it probably won’t be used...
just to be on the sure side :)

Testfile 47 / 50

Does not do anything at all with some sublibraries. Some of them ALWAYS ←↩
wait...

INPUTS
RtgScreen - The RtgScreen structure

SEE ALSO

OpenRtgScreen()
,
RtgBlit()

1.50 rtgmaster.library/WaitRtgSwitch

NAME
WaitRtgSwitch - Waits on Doublebuffering having happened

SYNOPSIS
WaitRtgSwitch(RtgScreen)

A0

WaitRtgSwitch(struct RtgScreen *)

FUNCTION
As SwitchScreens does not wait till the Doublebuffering has happened,
but returns AT ONCE, it might be that the program wants to access the
video memory BEFORE the change has happened. In this case you can use
WaitRtgSwitch to be sure the change really happened. If you do not
want to wait, simply do not use this call :)

Does not do much for some sublibraries. Some always wait...

INPUTS
The Screenhandle of the Screen, where the Wait should happen...

SEE ALSO

SwitchScreens()

1.51 rtgmaster.library/WriteRtgPixel

NAME
WriteRtgPixel - plots a single pixel to a RtgScreen

SYNOPSIS
WriteRtgPixel(RtgScreen, BufferAdr, XPos, YPos, Color)

A0 A1 D0 D1 D2

WriteRtgPixel(struct RtgScreen *, APTR, ULONG, ULONG, UBYTE)

Testfile 48 / 50

FUNCTION
Draws a single pixel at the specified position on a RtgScreen.
The BufferAdr is the starting address of the buffer the users wants
to draw the pixel in. The user has obtained this address using
LockRtgScreen() and GetBufAdr(). The BufferAdr is needed to specify
the correct buffer for screens which are double or triple buffered.

This function should only work for Palette mapped modes, Color is
the Color number of the palette.

This function is not supported by rtgAMI.library

DO NOT USE FOR SPEED RELEVANT STUFF. THIS FUNCTION MAY HAVE
SOME OVERHEAD. FOR FAST OPERATIONS USE COPYRTGPIXELARRAY OR
DO THE STUFF YOURSELVES.

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.
BufferAdr - The address of the memory containing the actual

screen graphics
XPos - X position of the pixel the user wants to plot
YPos - Y position of the pixel the user wants to plot
Color - Color number

SEE ALSO

OpenRtgScreen()
,
WriteRtgPixelRGB()

,
WriteRtgPixelArray()

1.52 rtgmaster.library/WriteRtgPixelArray

NAME
WriteRtgPixelArray - writes an array of pixels to a RtgScreen

SYNOPSIS
WriteRtgPixelArray(RtgScreen, BufferAdr, Array, Left, Top, Width, Height)

A0 A1 A2 D0 D1 D2 D3

WriteRtgPixelArray(struct RtgScreen *, APTR, APTR, ULONG, ULONG, ULONG, ←↩
ULONG)

FUNCTION
Draws an rectangular array of pixels to the specified position on a
RtgScreen. The BufferAdr is the starting address of the buffer the
user wants to draw this array of pixels in. The user has obtained
this address using LockRtgScreen() and GetBufAdr(). The BufferAdr is
needed to specify the correct buffer for screens which are double or
triple buffered.

This function should only work for Palette mapped modes. The array

Testfile 49 / 50

consists of one byte per pixel, each byte specifying a Color number.

This function is many times faster than writing each pixel seperately
to the screen using WriteRtgPixel().

This function is not supported by rtgAMI.library

DO NOT USE FOR SPEED RELEVANT STUFF. THIS FUNCTION MAY HAVE
SOME OVERHEAD. FOR FAST OPERATIONS USE COPYRTGPIXELARRAY OR
DO THE STUFF YOURSELVES.

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.
BufferAdr - The address of the memory containing the actual

screen graphics
Array - Pointer to an array of pixels which is Width pixels wide,

and Height pixels high. Each pixel is one byte in size.
Left - X position of the top-left of the rectangular pixel array
Top - Y position of the top-left of the rectangular pixel array
Width - Width of the array in pixels
Height - Height of the array in pixels

SEE ALSO

OpenRtgScreen()
,
WriteRtgPixel()

,WriteRtgPixelRGBArray()

1.53 rtgmaster.library/WriteRtgPixelRGB

NAME
WriteRtgPixelRGB - plots a single pixel to a RtgScreen

SYNOPSIS
WriteRtgPixelRGB(RtgScreen, BufferAdr, XPos, YPos, Color)

A0 A1 D0 D1 D2

WriteRtgPixelRGB(struct RtgScreen *, APTR, ULONG, ULONG, ULONG)

FUNCTION
Draws a single pixel at the specified position on a RtgScreen.
The BufferAdr is the starting address of the buffer the users wants
to draw the pixel in. The user has obtained this address using
LockRtgScreen() and GetBufAdr(). The BufferAdr is needed to specify
the correct buffer for screens which are double or triple buffered.

This function should only work for True Color modes, Color is
a 32 bit value which specifies what Color the pixel should be.
The layout of this 32-bit value is as follows:

Testfile 50 / 50

%aaaaaaaa.rrrrrrrr.gggggggg.bbbbbbbb

a = AlphaChannel (8-bits) which may or may not be ignored. The
user will set this to zero if the user doesn’t want to use
AlphaChannel.

r = Red component (8-bits) of the 24-bit RGB value
g = Green component (8-bits) of the 24-bit RGB value
b = Blue component (8-bits) of the 24-bit RGB value

DO NOT USE FOR SPEED RELEVANT STUFF. THIS FUNCTION MAY HAVE
SOME OVERHEAD. FOR FAST OPERATIONS USE COPYRTGPIXELARRAY OR
DO THE STUFF YOURSELVES.

INPUTS
RtgScreen - A handle for a valid screen previously opened by

this sublibrary’s OpenRtgScreen() function.
BufferAdr - The address of the memory containing the actual

screen graphics
XPos - X position of the pixel the user wants to plot
YPos - Y position of the pixel the user wants to plot
Color - A 32-bit value describing the color (see above)

SEE ALSO

OpenRtgScreen()
,
WriteRtgPixel()

,WriteRtgPixelRGBArray()

	Testfile
	Table Of Contents
	rtgmaster.library/CallRtgC2P
	rtgmaster.library/CloseClient
	rtgmaster.library/CloseRtgScreen
	rtgmaster.library/CloseServer
	rtgmaster.library/CopyRtgPixelArray
	rtgmaster.library/DrawRtgLine
	rtgmaster.library/DrawRtgLineRGB
	rtgmaster.library/FillRtgRect
	rtgmaster.library/FillRtgRectRGB
	rtgmaster.library/FreeRtgScreenModeReq
	rtgmaster.library/FreeScreenModes
	rtgmaster.library/GetBufAdr
	rtgmaster.library/GetRtgScreenData
	rtgmaster.library/GetScreenModes
	rtgmaster.library/GetSegment
	rtgmaster.library/GetUDPName
	rtgmaster.library/LoadRGBRtg
	rtgmaster.library/LockRtgScreen
	rtgmaster.library/OpenClient
	rtgmaster.library/OpenRtgScreen
	rtgmaster.library/OpenServer
	rtgmaster.library/RtgAccept
	rtgmaster.library/RtgBlit
	rtgmaster.library/RtgBltClear
	rtgmaster.library/RtgClearPointer
	rtgmaster.library/RtgCloseFont
	rtgmaster.library/RtgInAdr
	rtgmaster.library/RtgInitRDCMP
	rtgmaster.library/RtgIoctl
	rtgmaster.library/RtgOpenFont
	rtgmaster.library/RtgRecv
	rtgmaster.library/RtgScreenAtFront
	rtgmaster.library/RtgScreenModeReq
	rtgmaster.library/RtgSend
	rtgmaster.library/RtgSetFont
	rtgmaster.library/RtgSetPointer
	rtgmaster.library/RtgGetMsg
	rtgmaster.library/RtgReplyMsg
	rtgmaster.library/RtgSetTextMode
	rtgmaster.library/RtgSetTextModeRGB
	rtgmaster.library/RtgText
	rtgmaster.library/RtgWaitRDCMP
	rtgmaster.library/RtgWaitTOF
	rtgmaster.library/RunServer
	rtgmaster.library/SetSegment
	rtgmaster.library/SwitchScreens
	rtgmaster.library/UnlockRtgScreen
	rtgmaster.library/WaitRtgBlit
	rtgmaster.library/WaitRtgSwitch
	rtgmaster.library/WriteRtgPixel
	rtgmaster.library/WriteRtgPixelArray
	rtgmaster.library/WriteRtgPixelRGB

